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Abstract
Recent experimental measurements of large flexoelectric coefficients in
ferroelectric ceramics suggest that strain gradients can affect the polarization
and permittivity behaviour of inhomogeneously strained ferroelectrics. Here
we present a phenomenological model of the effect of flexoelectricity on
the dielectric constant, polarization, Curie temperature (TC), temperature of
maximum dielectric constant (Tm) and temperature of the onset of reversible
polarization (Tferro) for ferroelectric thin films subject to substrate-induced
epitaxial strains that are allowed to relax with thickness, and the qualitative
and quantitative predictions of the model are compared with experimental
results for (Ba0.5Sr0.5)TiO3 thin films on SrRuO3 electrodes. It is shown
that flexoelectricity can play an important role in decreasing the maximum
dielectric constant of ferroelectric thin films under inhomogeneous in-plane
strain, regardless of the sign of the strain gradient.

1. Introduction

When the thickness of epitaxially grown ferroelectric thin films is decreased, changes
in functional properties occur: the anomaly in the dielectric constant around the Curie
temperature is progressively suppressed [1, 2]; the absolute magnitude of the dielectric
constant collapses [1–3]; the coercive field increases [4]; and the remnant polarization
frequently changes [5, 6]. A great deal of work has been done to try and understand
the origin of such ‘size effects’ by considering, for example, the influences of epitaxial
strain [6, 7], Schottky barriers [8], size-induced phonon hardening [9], changes in grain size
and microstructure [10], field penetration into electrodes [11] and alteration in polarization
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states at the electrode–ferroelectric boundaries [12–16]. However, despite extensive research,
a complete understanding of the origin of size effects has not yet been achieved. Here an
additional possible contribution is considered, namely, the manner in which stress/strain
gradients inside the thin film change its functional behaviour.

When a film grows epitaxially on a substrate, the bottom layers of the film are subject
to important stresses due to lattice mismatch. Such stresses gradually relax as the thickness
of the film increases. This strain relaxation has been partially taken into account in recent
literature [6, 17, 18] by introducing a thickness-dependent stress (strain) term which is coupled,
through the electrostrictive coefficient (Qi j ), to the square of the polarization in the Landau–
Ginzburg–Devonshire (LGD) free energy. Ultimately, though, in such models the effect of
the strain gradient is equivalent to that of a homogeneous strain whose value is the average
across the film thickness. This approach is reasonably effective in predicting how the apparent
Curie temperature evolves as a function of mismatch strain and thickness [6, 17, 18] and also
in describing the strain–thickness–temperature phase diagram [18, 19]. However, it does
not generally predict the observed decrease in peak permittivity (the dielectric peak as a
function of temperature still presents a singularity at the shifted TC). This has been noted
in recent literature [20, 21], but theoretical attempts to address the issue using homogeneous
strain approaches have so far only been able to reproduce the smearing of the dielectric peak
under very specific conditions (tensile strain, 〈111〉 out-of-plane orientation), when in fact, the
disappearance of the dielectric singularity at TC and the general decrease of the permittivity of
thin films with decreasing thickness are universal features of the size effect.

The importance of the effect of strain gradients on the polarization of perovskite
ferroelectric ceramics has been recently evidenced by a series of experimental papers by Ma
and Cross [22, 23], who have measured the value of the so-called flexoelectric coefficient. The
flexoelectric coefficient measures the amount of polarization induced in a dielectric material
by strain gradients alone. Values of the flexoelectric coefficient as large as 20 µC m−1 for
(Pb, Zr)TiO3 (PZT) or 100 µC m−1 for (Ba, Sr)TiO3 (BST) prompted the authors of these
works to suggest that the flexoelectric effects could be of major importance in ferroelectric
thin films [23]. In this paper the potential impact of flexoelectric coupling on the dielectric and
polarization properties of ferroelectric thin films will be analysed using a phenomenological
approach, and compared with experimental results for inhomogeneously strained ferroelectric
thin films.

2. Phenomenological theory of flexoelectricity

The first phenomenological description of the flexoelectric effect is due to Kogan [24], who
proposed the inclusion of a coupling term between the strain gradient and polarization in the
thermodynamic potential. His work was explored by Tagantsev for the case of crystalline
dielectrics, and an estimation of the order of magnitude of the flexoelectric coefficient was
suggested as µ ≈ e/a, where e is the charge of the electron and a is the lattice parameter of the
crystal. Phenomenological arguments indicated that this value for normal dielectrics should
be multiplied by the relative permittivity for the case of high permittivity materials, including
ferroelectrics [25].

The role of the dielectric constant in enhancing the flexoelectric coefficient was indeed
confirmed by the experiments of Ma and Cross, who measured the flexoelectric coefficient as
a function of temperature for BST [22], and observed the flexoelectric coefficient to reach a
maximum near the dielectric peak associated with the ferroelectric phase transition.

Here we are concerned specifically with the phenomenological description of
flexoelectricity in relation with its impact on the dielectric behaviour of thin films. We will
start with the expression for the Landau–Ginzburg–Devonshire (LGD) free energy (�G) of an
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infinitesimally thin single-domain perovskite ferroelectric single crystal, epitaxially clamped
onto a cubic substrate, with in-plane elastic stresses due to lattice mismatch between the
film and substrate. We shall add to the conventional free energy expression a flexoelectricity
term to account for the coupling between the polarization and stress gradient, and a converse
flexoelectricity term to account for the coupling between the stress and polarization gradient.
Polarization is only allowed along the z axis (P3), and Voigt notation is used:

�G = 1
2 a P2

3 + 1
4β P4

3 − 1
2 si j

(
σiσ j

) − Qi3σi P2
3

− γi3
dσi

dz
P3 − ηi3σi

dP3

dz
+ G

(
dP3

dz

)2

+ K

(
dσi

dz

)2

− E3 P3 + σiε j (1)

with γi3 being the stress-related flexoelectric coupling coefficient, ηi3 being the converse
flexoelectric coefficient and TC being the Curie temperature. We consider that only in-plane
stresses arise from the mismatch, and that these are thickness dependent, so σ1 = σ2 = σ(z) is
the mismatch-induced stress and all other stress components are 0; likewise ε1 = ε2 = ε(z) =
in-plane strain. In this treatment only the out-of-plane polarization is considered. Both the
correlation term G(dP/dz)2 and the flexoelectric coupling mean that the polarization is, in
principle, thickness dependent, so P3 = P(z). To find the actual total free energy we integrate
equation (1) with respect to z; thus

�G =
∫ (
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+
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σ(z)ε(z) dz. (2)

This expression is essentially the same as obtained in previous works [26, 27], the only
difference being the inclusion of the flexoelectric and converse flexoelectric terms. The
equilibrium solution is found by minimizing with respect to the order parameters. In order
to solve this equation we must know the boundary conditions. It is useful to assume a
symmetric system with zero boundary conditions so that we can then simplify minimization
using the Euler–Lagrange variational method. The physical validity of this approximation
is arguable and may depend, among other things, on the type of electrode used. If we did
not impose zero boundary conditions, the free energy would have to include the surface term
+1/2Dδ 1(P2

s1 + P2
s2), where D is a constant, Psi are the polarizations at the two surfaces and

δ is the extrapolation depth [26–28]. For the purpose of the present analysis, though, we shall
simplify the problem and consider a zero boundary condition4. Under these conditions we get,
for the derivative with respect to P ,

E = a P(z) + bP(z)3 − 2Q13 P(z)σ (z) − γ13
δσ (z)

δz
− d

dz

[
−η13σ(z) + G

δP(z)

δz

]
. (3)

And minimization with respect to the stress yields

−ε(z) = −(s11 + s12)σ (z) − Q13 P(z)2 − η13
δP(z)

δz
− d
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[
−γ13 P(z) + K

δσ (z)
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. (4)

Hence,

σ(z) = Y

1 − ν

(
+ε(z) − Q13 P(z)2 − η13

δP(z)

δz
− d
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[
−γ13 P(z) + K

δσ (z)
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])
(5)

4 A constant term can be added to the stress variable so that it is 0 at the boundary.
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where we have related the elastic compliances to the Young’s modulus Y and the Poisson’s
ratio ν. We can now substitute (5) into (4) and calculate the polarization. In order to simplify
the analysis, we shall consider a situation where d

dz [K δε(z)
δz ] is ignored. We then obtain the

following equation:

E = P(z)

[
a − 2Q13

Y

1 − ν
ε(z)

]
+ P(z)3

[
b + 2Q2

13
Y

1 − ν

]

− (γ − η)
Y

1 − ν

dε(z)

dz
−

[
G − Y

1 − ν
(γ − η)2

]
d2 P(z)

dz2
. (6)

For conventional (non-relaxor) ferroelectrics we have that

a = α(T − Tc) (7)

where α is the Curie constant and Tc is the critical temperature for the ferroelectric transition
(the Curie temperature); the first coefficient of equation (6) can be conveniently redefined as

a∗(z) = α(T − T ∗
C (z)) (8)

where

T ∗
C (z) = TC +

2

α

Y

1 − ν
Q13ε(z). (9)

Thus, given that Q13 is negative, the Curie temperature will shift up or down depending on
whether the in-plane strain is negative (compressive) or positive (tensile), respectively.

The second coefficient of equation (6) becomes

b∗ =
[

b + 2Q2
13

Y

1 − ν

]
. (10)

Here it is worth noting that the bulk phase transition of ferroelectrics such as BaTiO3 or
PbTiO3 is first order, which means that b is negative and thus a P6 term should be included in
the thermodynamic potential for the proper description of the ferroelectric transition. However,
the addition of the electrostrictive term in equation (10) changes the sign of b∗ from negative to
positive [7, 19], thus changing the character of the phase transition from first to second order,
which allows the P6 term to be neglected, thereby simplifying the treatment (which is now
analytically solvable). Empirically, this has been seen to be the case for BST thin films [6, 7].
In the present work we have therefore focused on the case b∗ > 0 (second-order transition).

The last coefficient of equation (6) is defined as

G∗ =
[
− Y

1 − ν
(γ − η)2 + G

]
. (11)

This yields the final expression

E = a∗ P(z) + b∗ P(z)3 − (γ − η)
Y

1 − ν

dε(z)

dz
− G∗ d2 P(z)

dz2
. (12)

The inverse permittivity is

χ−1 = dE

dP
= d2(�G)

dP2
= 3b∗P2 + α(T − T ∗

C ) − d

dP

[
G∗ d2 P

dz2

]
. (13)

And the effectively measured inverse permittivity will be found by integrating with respect
to z and dividing by the thickness of the capacitor. We can now solve these equations to calculate
the polarization, and the inverse permittivity as a function of strain, thickness and temperature.
In this paper we shall focus on the case of a film subject to externally induced strain arising
from lattice mismatch with the substrate.
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Before proceeding to calculate the solution, though, it is necessary to relate the flexoelectric
coefficients in the model with the value experimentally measured. In order to do this, we
note that G∗ is of order 10−9 J m3 C−2 [15, 27], and thus this term is only important in
an ultrathin film regime, where the gradient term associated with the surface depolarization
becomes relatively important. For bulk ceramics or single crystals, the G∗d2 P/dz2 term in
equations (12) and (13) can therefore be ignored, and the inverse permittivity is

χ−1 = 3b∗P2 + α(T − T ∗
C ). (14)

If this is substituted back into the equation for the polarization, the following expression is
obtained:

E = χ−1 P(z) − (γ − η)
Y

1 − ν

dε(z)

dz
− 2b∗ P(z)3. (15)

For small polarizations (i.e., well into the paraelectric state), the P3 term can also be
ignored to a first approximation. Thus, rearranging the terms, and setting E = 0, we obtain
the following expression for the purely flexoelectric polarization as a function of strain gradient
in a bulk ferroelectric:

P(z) = χ(γ − η)
Y

1 − ν

dε(z)

dz
. (16)

If the flexoelectric coefficient µ is measured as the derivative of the polarization with
respect to the strain gradient, it is clear that the flexoelectric coefficient will be proportional
to the permittivity, as expected. Equation (16) also allows us to relate the phenomenological
coefficients (γ − η) in our model to the empirically measured coefficient, µ:

µ = (γ − η)χ
Y

1 − ν
. (17)

Typical values of µ for BST are of the order of 10−4 C m−1 [22], so the flexoelectric
coefficients in the model would be of the order of (γ − η) ∼ 10−9 m3 C−1.

It must be emphasized that equation (16) is only valid for small values of the polarization;
otherwise one has to solve equation (15). This has very important consequences from an
experimental point of view: Ma and Cross noted that the linear dependence between the
flexoelectric polarization and strain gradient broke down near the dielectric peak, and they
tentatively attributed this to the possibility that some small domains of ferroelectric polarization
might nucleate above Tc within the ceramic. However, such an appearance of ferroelectricity
at temperatures higher than the bulk Tc would be very unlikely for the absolute value of the
strains applied in their experiment, as they also correctly noted [22]. We think that, instead,
as the flexoelectric polarization becomes large due to the increase in permittivity near Tc, the
assumption of a small P breaks down, and thus the flexoelectric polarization departs from the
linear dependence on the strain gradient.

3. Thin film ferroelectrics under the effect of epitaxial mismatch strain

Typical values for the flexoelectric coefficient in ferroelectrics are in the range
1–100 µC m−1 [22, 23], and Y is of the order of 200 GPa, so the coefficient multiplying
the strain gradient term is of order 101–103 (S.I. units). On the other hand, the correlation
coefficient is of order G∗ ∼ 10−9 (S.I. units) [15, 27], so in the presence of external strain, one
can generally ignore the last term of equation (12).

What we then obtain is

E = α(T − T ∗
c (z))P(z) + b∗ P(z)3 − (γ − η)

Y

1 − ν

dε(z)

dz
. (18)
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The inverse permittivity is

χ−1 = dE

dP
= d2(�G)

dP2
= 3b∗P2 + α(T − T ∗

C ). (19)

And the effectively measured inverse permittivity is found by integrating with respect to z and
dividing over the total thickness (t) of the capacitor:

χ−1
eff =

∫ t/2
−t/2

(
a(T − T ∗

C (z)) + 3b∗P(z)2
)

dz

t
. (20)

First we solve the equation for the polarization. The coefficients can be redefined to simplify
the notation:

a∗(z)P(z) + b∗ P(z)3 − c = 0 (21)

where

c = (γ − η)
Y

1 − ν

dε(z)

dz
− E . (22)

Equation (17) has three solutions for the polarization [29]:

P0 =

 c
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√(
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3b∗

)3
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(
c

2b∗

)2



1/3

+


 c

2b∗ −
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3b∗

)3

+

(
c

2b∗

)2



1/3

(23)

and

P = 1

2
P0 ± i

√
3

3

( c

2b∗
)1/3





1 +

√√√√(
a∗
3b∗

)3

(
c

2b∗
)2 + 1




1/3

−

1 −

√√√√(
a∗
3b∗

)3

(
c

2b∗
)2 + 1




1/3 . (24)

Equation (23) is the only real solution when the discriminant inside the square root is
positive. Assuming b∗ > 0 (second-order phase transition), the discriminant is guaranteed to
be positive when a∗ is positive, i.e., T > T ∗

C , and hence it is the high temperature paraelectric
solution. The solutions given by equation (24) are only real in the low temperature ferroelectric
regime. It is important to note that the onset of reversible polarization does not actually happen
at Tc (or at the strain-modified T ∗

c ), but at the temperature Tferro at which the discriminant is 0,
which is given by

Tferro = T ∗
C − 3b∗

α

( c

2b∗
)2/3

. (25)

Thus, the ferroelectric transition will take place at a temperature lower than the Curie
temperature. On the other hand, the temperature at which the dielectric constant is maximum
will be found by minimizing the inverse permittivity with respect to T , although the analytical
expression for this is much more cumbersome, as it involves differentiating P with respect to
the temperature, and it is therefore easier to calculate Tm numerically. This splitting of the bulk
critical temperature into three important temperatures, namely, the Curie temperature T ∗

C , the
temperature for the ferroelectric transition Tferro and the temperature of the maximum dielectric
constant Tm, has been described before for the case of ferroelectrics under the influence of
external fields [16]. Here we note that strain gradients alone can produce the same effect.

It is also important to note that c is always different from 0 and hence so is the polarization.
The consequence of this is that the inverse permittivity, given by (19) and (20), can no longer
be 0, and therefore the singularity in the dielectric constant associated with the paraelectric–
ferroelectric transition must disappear for thin films under inhomogeneous strain. The
disappearance of the singularity in the dielectric constant is precisely one of the defining
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Figure 1. Calculated effective relative permittivity as a function of temperature for BST thin films
grown on SRO. The simulated curves correspond to films of thickness t = 220, 280, 340, 660
and 950 nm, which are the thicknesses of the films grown in the experiment. The higher dielectric
constant corresponds to the thickest film, and vice versa.

features of the size effect. Importantly too, given the dependence of the inverse permittivity on
P2, the sign of the strain gradient is irrelevant: both tensile and compressive strain gradients
will result in a smearing of the dielectric peak.

In order to perform the calculations an expression for the strain gradient is needed.
Although it is commonly assumed that the in-plane strain is a constant value equal to the
lattice mismatch between film and substrate, there is theoretical [17, 30] and empirical [6]
evidence that the mismatch strain relaxes with thickness, usually following an exponential
law [6, 17]; thus

dε

dz
= − ε

λ
⇒ ε(z) = εme− z

λ (26)

where εm is the lattice mismatch between substrate and film and λ is the thickness at which
the strain has relaxed to 1/e of its mismatch value, so it can be viewed as some sort of ‘depth
of penetration’ of the strain into the film.

It is now possible to calculate the expected polarization and dielectric constant as a func-
tion of film thickness. Here we have performed the calculations for a Ba0.5Sr0.5TiO3 (BST)
film grown on a SrRuO3 (SRO) base electrode. Given that the lattice parameter of SRO is
3.93 Å and that of BST is 3.95 Å, the lattice mismatch strain is −0.5%. Tc, Y , a, b and λ have
been obtained from previous literature [31] and are TC = 235 K, Y = 197.6 GPa, ν = 0.35,
a = 9.1 × 105, b = 4 × (796 + 2, 16 × (T − 273))× 106 (both in S.I. units), λ ∼= 300 nm [6];
also the flexoelectric coefficient for BST is µ12 = 10−4 C m−1 [22]. Introducing parameters
in equations (23) and (24) allows the calculation of the polarization, which, substituted in
equations (19) and (20), allows the calculation of the effective relative dielectric constant as a
function of temperature and film thickness. In order to reproduce typical experimental condi-
tions we have imposed that external stress is only applied at the bottom electrode (SRO) but not
at the top one (gold). Likewise, since in (20) we are integrating from −t/2 to t/2 we have to
redefine the thickness variable in the strain relaxation (equation (26)) so that ε(z) = εme−(z+t/2).

The permittivity and polarization as a function of temperature for films of different
thicknesses are plotted in figures 1 and 2. The results show that as thickness is decreased,
the dielectric peak decreases and shifts up in temperature, while the polarization increases due
to the flexoelectric contribution.

In figure 3 we have plotted the numerically calculated T ∗
C , Tferro and Tm as a function of

film thickness for BST films grown under the same conditions. The expected splitting of the
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Figure 2. Calculated effective polarization as a function of temperature for BST thin films of
various thickness grown on SRO. The films thicknesses are the same as in figure 1. The biggest
polarization corresponds to the thinnest film and vice versa.

Figure 3. Calculated critical temperatures Tm (dotted curve), T ∗
C (continuous curve) and Tferro

(dashed curve) as a function of z. The bulk Curie temperature is TC = 235 K.

Figure 4. Calculated polarization at room temperature as a function of film thickness.

critical temperature into three different temperatures, with Tm > Tc > Tferro, is evident, as is
the marked upward trend in Tm with smaller thickness.

Finally, in figure 4 the room temperature polarization has been plotted as a function of
thickness, showing the increase in polarization with lowering thickness.

In order to compare the predictions with experimental results, the relative dielectric
constant and polarization were measured for BST thin films grown on SRO substrates by
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Figure 5. Measured relative dielectric constant as a function of temperature for BST films grown
on SRO of thickness t = 175, 280, 340, 660 and 950 nm (cf figure 1).
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Figure 7. The measured temperature of maximum dielectric constant, Tm, for films of various
thicknesses (cf figure 3). Note that for the thinnest films two maxima were observed.

PLD. Details of the growth methodology and experimental measurements can be found
elsewhere [6, 10]. The experimental results are shown in figures 5–8.

The comparison between the experimental results and the simulations is qualitatively
good: both the observed decrease in dielectric constant and the increase in polarization as
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Figure 8. The room temperature polarization for films of various thicknesses (cf figure 4).

thickness is reduced are well reproduced, as is the smoothing of the dielectric curves and the
upward trend in the temperature of the maximum dielectric constant with decreasing thickness.

The quantitative similarity between calculations and experiment is also worth noting:
although the actual shape of the dielectric peak is sharper in our idealized simulations than
in the experiment, the maximum values of the dielectric constant are well reproduced, as are
the values for the room temperature polarization. The main quantitative difference lies in the
predicted values of Tm, which are noticeably higher than experimentally registered.

As regards the accuracy of these calculations, the formula used for the strain distribution
(equation (26)) has been observed to be at least empirically accurate [6, 16],but other equations,
such as those based on the Mathews–Blackeslee model [30], may also be used. Although this
can affect the quantitative results of the calculations, it should not alter the quantitative order
of magnitude, nor would it affect the qualitative aspects of the model.

Other simplifications that we have made are as follows:

(a) We neglected the surface depolarization and surface tension terms (second derivatives of
polarization and strain with respect to z). This approximation is roughly valid whenever
there is a dominant external strain term, or for sufficiently thick films compared with
the penetration depth of the surface depolarization, which is typically a few nanometres
[26–28], or when the choice of electrode prevents or minimizes the surface depolarization
effect [16]. It is nevertheless worth noticing that the flexoelectric contribution to G∗ is of
the same order as the naked surface depolarization term, G, which is one of the sources
of the size effect [15, 16], and thus the study of the flexoelectrically modified size effect
for ultrathin films is certainly worthy of further attention.

(b) As stated before, we have limited ourselves to the case of second-order ferroelectric
transitions. The extension of the model to describe also first-order transitions remains to
be carried out.

4. Conclusions

A phenomenological model of the effect of flexoelectricity on the dielectric constant and
polarization behaviour of inhomogeneously strained ferroelectric thin films has been presented.
The model was applied to simulate the dielectric properties of a BST thin film epitaxially
clamped to a substrate with compressive in-plane stress that relaxes with thickness, and the
numerical simulations were compared with our own experimental results for films of the same
composition, thickness and lattice mismatch with the substrate.
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The conclusions of this study can be summarized as follows:

(i) The flexoelectric coefficient measured in bulk is only a linear function of the strain
gradient or the permittivity when the induced polarization is small; near the dielectric
peak, the assumption of small flexoelectric polarization is no longer valid and the linear
relationship breaks down, and P3 corrections must be taken into account when measuring
the flexoelectric coefficient.

(ii) In the presence of strain gradients, there is a splitting of the bulk Curie temperature into
three important temperatures, namely, the strain-modified Curie temperature (T ∗

C ), the
temperature for the onset of reversible polarization (Tferro) and the temperature of the
dielectric peak (Tm).

(iii) The disappearance of the singularity in the dielectric constant as a function of temperature
is predicted for ferroelectric thin films subjected to inhomogeneous strain,regardless of the
sign of the lattice mismatch with the substrate. The dielectric constant of inhomogeneously
strained films is always lower than in bulk, in agreement with experimental results.
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